
Recitation 9. May 11

Focus: probability (discrete and continuous), random variables, principal component analysis (PCA)

A random variable is a quantity X that takes values in R. It can be either:

• discrete: X takes only countably many possible values xi each with probability pi

• continuous: X is associated to a probability distribution p(x) (where p : R→ R is a function).

The mean (sometimes called “expected value”) E[X] of X is the quantity:

•
∑
i

xipi if X is discrete

•
∫ ∞
−∞

xp(x) dx if X is continuous

The mean is linear: if X,Y are random variables and a, b ∈ R, then E[aX + bY ] = aE[X] + bE[Y ].

Given two random variables X,Y , their covariance ΣXY = E[(X − E[X])(Y − E[Y ])] is:

•
∑
ij

pij(xi − µ)(yj − ν) if X is discrete

•
∫ ∞
−∞

∫ ∞
−∞

(x− µ)(y − ν)p(x, y) dxdy if X is continuous

The covariance of X with itself is called the variance ΣXX .

Given n random variables X1, . . . , Xn, we may assemble them into a vector X =

X1

...
Xn

, called a random vector .

The covariance matrix of these random variables X1, . . . , Xn is the matrix

K =

ΣX1X1
· · · ΣX1Xn

...
. . .

...
ΣXnX1

· · · ΣXnXn

 = E[(X − µ)(X − µ)T ], where µ = E[X] =

µ1

...
µn

 =

E[X1]
...

E[Xn]


K is always positive semidefinite. It is positive definite unless a linear combination of X1, . . . , Xn is constant.

Principal component analysis (PCA) involves diagonalizing the covariance matrix:

K = QDQT

where Q is orthogonal and D is diagonal. This means that the random vector Y = QTX has diagonal covariance
matrix D, i.e. its entries are uncorrelated random variables (i.e. have covariance 0). In other words:

Y =

Y1...
Yn

 =

q11 · · · qn1
...

. . .
...

q1n · · · qnn


X1

...
Xn

 ⇒
{
Yi = q1iX1 + · · ·+ qniXn

}
i∈{1,...,n}

are linear combinations of X1, . . . , Xn that are (by construction) uncorrelated. The individual variances of the random
variables Y1, . . . , Yn are the diagonal entries of the diagonal matrix D.



1. Sample from the numbers 1 to 1000 with equal probabilities 1/1000, and look at the last digit of the sample,
squared. This square can end with X = 0, 1, 4, 5, 6, or 9. What are the probabilities p0, p1, p4, p5, p6 and p9 that
each of these digits occurs among the sample? Compute the mean and variance of X.

Solution: If n = 10k, then the last digit of n2 will be 0. If n = 10k + 1 or n = 10k + 9, then the last digit of
n2 will be 1. If n = 10k + 2 or n = 10k + 8, then the last digit of n2 will be 4. If n = 10k + 3 or n = 10k + 7,
then the last digit of n2 will be 9. If n = 10k + 4 or n = 10k + 6, then the last digit of n2 will be 6. If
n = 10k + 5, then the last digit of n2 will be 5. Thus,

p0 =
1

10
p1 =

1

5
p4 =

1

5
p5 =

1

10
p6 =

1

5
p9 =

1

5

We therefore see that the mean is

E[X] = 0 · 1

10
+ 1 · 1

5
+ 4 · 1

5
+ 5 · 1

10
+ 6 · 1

5
+ 9 · 1

5
=

9

2
,

and the variance

E

[(
X − 9

2

)2
]

=

(
0− 9

2

)2
1

10
+

(
1− 9

2

)2
1

5
+

(
4− 9

2

)2
1

5
+

(
5− 9

2

)2
1

10
+

(
6− 9

2

)2
1

5
+

(
9− 9

2

)2
1

5
=

181

20

2. Let A, H, and W denote random variables corresponding to the age, height, and weight of dogs at a local shelter,

respectively. Suppose the random vector

AH
W

 takes two values,

 7
20
132

 and

 4
24
120

 with probabilities p and 1− p

respectively. Compute the covariance matrix of A, H, and W .

Solution: The mean of the random vector (i.e. the vector of means) is:

µ =

µA

µH

µW

 = p

 7
20
132

+ (1− p)

 4
24
120

 =

 3p+ 4
24− 4p

12p+ 120


Then the covariances are given by:

ΣAA = E[(A− µA)2] = p(7− (3p+ 4))2 + (1− p)(4− (3p+ 4))2 = 9p(1− p)
ΣHH = E[(H − µH)2] = p(20− (24− 4p))2 + (1− p)(24− (24− 4p))2 = 16p(1− p)

ΣWW = E[(W − µW )2] = p(132− (12p+ 120))2 + (1− p)(120− (12p+ 120))2 = 144p(1− p)
ΣAH = E[(A− µA)(H − µH)] =

= p(7− (3p+ 4))(20− (24− 4p)) + (1− p)(4− (3p+ 4))(24− (24− 4p)) = −12p(1− p)
ΣAW = E[(A− µA)(W − µW )] =

= p(7− (3p+ 4))(132− (12p+ 120)) + (1− p)(4− (3p+ 4))(120− (12p+ 120)) = 36p(1− p)
ΣHW = E[(H − µH)(W − µW )] =

= p(20− (24− 4p))(132− (12p+ 120)) + (1− p)(24− (24− 4p))(120− (12p+ 120)) = −48p(1− p)

and so the covariance matrix is:

K = p(1− p)

 9 −12 36
−12 16 −48
36 −48 144



3. Suppose now that the random variables A,H,W from above instead have the covariance matrix

K =

 3 −1 2
−1 3 −2
2 −2 6

 .
Find three linear combinations of A,H,W which are pairwise uncorrelated random variables. What is the variance
of each?



Solution: We begin by diagonalizing K. Its characteristic polynomial is:

pK(λ) = (3− λ)((3− λ)(6− λ)− 4) + ((−1)(6− λ) + 4) + 2(2− 2(3− λ)) = (2− λ)2(8− λ),

so the eigenvalues of K are 2 (with multiplicity 2) and 8. We now find a basis of eigenvectors. Since:

K − 8I =

−5 −1 2
−1 −5 −2
2 −2 −2



from which we deduce that

 1
−1
2

 spans the null space of K − 8I. Thus, 1√
6

 1
−1
2

 is an eigenvector (of norm

1) of K corresponding to eigenvalue 8. Similarly, we have that:

K − 2I =

 1 −1 2
−1 1 −2
2 −2 4



from which we deduce that

1
1
0

 and

−1
1
1

 span the null space of K − 2I; moreover, these vectors are orthog-

onal (in this case, it was fairly easy to find a pair of orthogonal vectors spanning the null space by inspection,
but in general you can always row reduce to find a basis for the null space and then apply Gram-Schmidt).

Thus, we have that 1√
2

1
1
0

 and 1√
3

−1
1
1

 form an orthonormal basis for the eigenspace for eigenvalue 2. We

therefore have:

K =


1√
6

1√
2
− 1√

3

− 1√
6

1√
2

1√
3

2√
6

0 1√
3


8 0 0

0 2 0
0 0 2




1√
6

1√
2
− 1√

3

− 1√
6

1√
2

1√
3

2√
6

0 1√
3


T

=


1√
6

1√
2
− 1√

3

− 1√
6

1√
2

1√
3

2√
6

0 1√
3


8 0 0

0 2 0
0 0 2




1√
6
− 1√

6
2√
6

1√
2

1√
2

0

− 1√
3

1√
3

1√
3

 .
This means that the random vector

1√
6
− 1√

6
2√
6

1√
2

1√
2

0

− 1√
3

1√
3

1√
3


AH
W

 =


1√
6
A− 1√

6
H + 2√

6
W

1√
2
A+ 1√

2
H

− 1√
3
A+ 1√

3
H + 1√

3
W


consists of random variables which are pairwise uncorrelated. Their variances are, respectively, 8, 2 and 2.

This process is known as principal component analysis. Note that because the covariance matrix in #2
has rank 2, it has 0 as an eigenvalue. Therefore, by a similar analysis we find that there must be a linear
combination in that case of A,H,W which has variance 0, i.e. it is a constant.

4. Let X be a random variable, with mean µ and variance σ2. Compute E[X2] in terms of µ and σ.

Solution: We have:

σ2 = ΣXX = E[(X−µ)2] = E[X2−2µX+µ2] = E[X2]−2µE[X]+µ2E[1] = E[X2]−2µ2 +µ2 = E[X2]−µ2,

By adding µ2 to both sides of the equation above, we get E[X2] = σ2 + µ2.


